Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.065
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2306382121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38640347

RESUMO

Hippocampal somatostatin-expressing (Sst) GABAergic interneurons (INs) exhibit considerable anatomical and functional heterogeneity. Recent single-cell transcriptome analyses have provided a comprehensive Sst-IN subpopulations census, a plausible molecular ground truth of neuronal identity whose links to specific functionality remain incomplete. Here, we designed an approach to identify and access subpopulations of Sst-INs based on transcriptomic features. Four mouse models based on single or combinatorial Cre- and Flp- expression differentiated functionally distinct subpopulations of CA1 hippocampal Sst-INs that largely tiled the morpho-functional parameter space of the Sst-INs superfamily. Notably, the Sst;;Tac1 intersection revealed a population of bistratified INs that preferentially synapsed onto fast-spiking interneurons (FS-INs) and were sufficient to interrupt their firing. In contrast, the Ndnf;;Nkx2-1 intersection identified a population of oriens lacunosum-moleculare INs that predominantly targeted CA1 pyramidal neurons, avoiding FS-INs. Overall, our results provide a framework to translate neuronal transcriptomic identity into discrete functional subtypes that capture the diverse specializations of hippocampal Sst-INs.


Assuntos
Hipocampo , Interneurônios , Camundongos , Animais , Interneurônios/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
2.
Sci Rep ; 13(1): 19473, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945756

RESUMO

Abnormal dopamine neurotransmission is a common trait of some psychiatric diseases, like schizophrenia or bipolar disorder. Excessive dopaminergic tone in subcortical brain regions is associated with psychotic episodes, while reduced prefrontal dopaminergic activity is associated with impaired cognitive performance and reduced motivation, among other symptoms. Inhibitory interneurons expressing the calcium binding protein parvalbumin are particularly affected in both schizophrenia and bipolar disorder, as they set a fine-tuned physiological inhibitory/excitatory balance. Parvalbumin and somatostatin interneuron subtypes, are born from the medial ganglionic eminence and require the sequential expression of specific transcription factors for their specification, such as Nkx6.2. Here, we aimed at characterizing in detail interneuron subtypes derived from Nkx6.2 expressing progenitors by the generation of an Nkx6.2 Cre transgenic mouse line. We show that Nkx6.2 specifies over a third part of the total population of cortical somatostatin interneurons, preferentially at early developmental time points, whereas at late developmental stages, Nkx6.2 expressing progenitors shift to parvalbumin interneuron specification. Dopamine D2 receptor deletion from Nkx6.2 expressing progenitors causes abnormal phenotypes restricted to cognitive, motivation and anxiety domains. Our results show that Nkx6.2 have the potential to specify both somatostatin and parvalbumin interneurons in an opposite timed program and that DRD2 expression is required in Nkx6.2 expressing progenitors to avoid impaired phenotypes commonly associated to the pathophysiology of psychiatric diseases.


Assuntos
Motivação , Parvalbuminas , Animais , Camundongos , Ansiedade/genética , Cognição , Interneurônios/metabolismo , Camundongos Transgênicos , Parvalbuminas/metabolismo , Fenótipo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
3.
Genes (Basel) ; 14(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38002975

RESUMO

In this study, to explore the effect of growth hormone changes on the related genes and regulatory roles of the turtle, PCR amplification, real-time fluorescence quantitative analysis, and enzyme cutting technology were used to clone and sequence the somatostatin (SS) gene, growth hormone receptor (GHR), and insulin-like growth factor-1 (IGF-I) sequence of Chinemys reevesii. The effects of human growth hormone on the mRNA expression of growth-axis-related genes SS, GHR, and IGF-1 in different sexes were observed. The study of the SS gene in turtles using real-time fluorescence quantitative PCR showed that the SS gene was mainly expressed in the nervous system and the digestive system, with the highest expression found in the brain, while the GHR gene and the IGF-I gene were expressed in all tissues of Chinemys reevesii. The SS gene was expressed in the brain, pituitary, liver, stomach, and intestine, with the highest expression in the brain and the lowest expression in the liver. Within 4 weeks of the injection of exogenous growth hormone, the expression level of the SS gene in the brain of both sexes first increased and then decreased, showing a parabolic trend, and the expression level of the experimental group was lower than that of the control group. After the injection of growth hormone (GH), the expression of the GHR gene in the liver of both sexes showed a significant increase in the first week, decreasing to the control group level in the second week, and then gradually increasing. Finally, a significant level of difference in the expression of the GHR gene was reached at 3 and 4 weeks. In terms of the IGF-I gene, the changing trend of the expression level in the liver was the same as that of the GHR gene. After the injection of exogenous growth hormone, although the expression of the SS gene increased the inhibition of the secretion of the GHR gene by the Reeves' turtle, exogenous growth hormone could replace the synthesis of GH and GHR, accelerating the growth of the turtle. The experiments showed that the injection of recombinant human growth hormone affects the expression of SS, GHR, and IGF-1 genes, and promotes the growth of the Reeves' turtle.


Assuntos
Hormônio do Crescimento Humano , Tartarugas , Masculino , Animais , Feminino , Humanos , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Receptores da Somatotropina/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Hormônio do Crescimento Humano/genética , Hormônio do Crescimento Humano/farmacologia , Regulação da Expressão Gênica , Somatostatina/genética , Somatostatina/metabolismo
4.
JAMA Psychiatry ; 80(12): 1235-1245, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37647039

RESUMO

Importance: Individuals with schizophrenia (SZ) exhibit pronounced deficits in somatostatin (SST) messenger RNA (mRNA) levels in the dorsolateral prefrontal cortex (DLPFC). Molecularly distinct subtypes of SST neurons, located in the superficial and deep zones of the DLPFC, are thought to contribute to different functional processes of this region; understanding the specificity of SST alterations in SZ across these zones could inform the functional consequences of those alterations, including cognitive impairments characteristic of SZ. Objective: To quantify mRNA levels of SST and related neuropeptides in the DLPFC in individuals with SZ, bipolar disorder (BPD), or major depressive disorder (MDD) and unaffected comparison individuals. Design, Setting, and Participants: This case-control study, conducted from January 20, 2020, to March 30, 2022, used postmortem brain tissue specimens previously obtained from individuals with SZ, MDD, or BPD and unaffected individuals from a community population through 2 medical examiners' offices. Demographic, clinical, and educational information was ascertained through psychological autopsies. Exposures: Diagnosis of SZ, BPD, or MDD. Main Outcome and Measures: The main outcome was levels of SST and related neuropeptide mRNA in 2 DLPFC zones, examined using laser microdissection and quantitative polymerase chain reaction or fluorescent in situ hybridization (FISH). Findings were compared using educational attainment as a proxy measure of premorbid cognition. Results: A total of 200 postmortem brain specimens were studied, including 65 from unaffected comparison individuals (42 [65%] male; mean [SD] age, 49.2 [14.1] years); 54 from individuals with SZ (37 [69%] male; mean [SD] age, 47.5 [13.3] years); 42 from individuals with MDD (24 [57%] male; mean [SD] age, 45.6 [12.1] years); and 39 from individuals with BPD (23 [59%] male; mean (SD) age, 46.2 [12.5] years). Compared with unaffected individuals, levels of SST mRNA were lower in both superficial (Cohen d, 0.68; 95% CI, 0.23-1.13; P = .004) and deep (Cohen d, 0.60; 95% CI, 0.16-1.04; P = .02) DLPFC zones in individuals with SZ; findings were confirmed using FISH. Levels of SST were lower only in the superficial zone in the group with MDD (Cohen d, 0.58; 95% CI, 0.14-1.02; P = .12), but the difference was not significant; SST levels were not lower in either zone in the BPD group. Levels of neuropeptide Y and tachykinin 1 showed similar patterns. Neuropeptide alterations in the superficial, but not deep, zone were associated with lower educational attainment only in the group with SZ (superficial: adjusted odds ratio, 1.71 [95% CI, 1.11-2.69]; P = .02; deep: adjusted odds ratio, 1.08 [95% CI, 0.64-1.84]; P = .77). Conclusions and Relevance: The findings revealed diagnosis-specific patterns of molecular alterations in SST neurons in the DLPFC, suggesting that distinct disease processes are reflected in the differential vulnerability of SST neurons in individuals with SZ, MDD, and BPD. In SZ, alterations specifically in the superficial zone may be associated with cognitive dysfunction.


Assuntos
Transtorno Depressivo Maior , Neuropeptídeos , Esquizofrenia , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/genética , Estudos de Casos e Controles , Hibridização in Situ Fluorescente , Córtex Pré-Frontal , Somatostatina/genética , Somatostatina/metabolismo , Neurônios , Cognição , RNA Mensageiro
5.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37254876

RESUMO

RAS/MAPK gene dysfunction underlies various cancers and neurocognitive disorders. Although the roles of RAS/MAPK genes have been well studied in cancer, less is known about their function during neurodevelopment. There are many genes that work in concert to regulate RAS/MAPK signaling, suggesting that if common brain phenotypes could be discovered they could have a broad impact on the many other disorders caused by distinct RAS/MAPK genes. We assessed the cellular and molecular consequences of hyperactivating the RAS/MAPK pathway using two distinct genes in a cell type previously implicated in RAS/MAPK-mediated cognitive changes, cortical GABAergic interneurons. We uncovered some GABAergic core programs that are commonly altered in each of the mutants. Notably, hyperactive RAS/MAPK mutants bias developing cortical interneurons towards those that are somatostatin positive. The increase in somatostatin-positive interneurons could also be prevented by pharmacological inhibition of the core RAS/MAPK signaling pathway. Overall, these findings present new insights into how different RAS/MAPK mutations can converge on GABAergic interneurons, which may be important for other RAS/MAPK genes and related disorders.


Assuntos
Transdução de Sinais , Somatostatina , Alelos , Somatostatina/genética , Somatostatina/metabolismo , Transdução de Sinais/genética , Sistema de Sinalização das MAP Quinases/genética , Interneurônios/metabolismo , Neurônios GABAérgicos/metabolismo
6.
Signal Transduct Target Ther ; 8(1): 186, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37193687

RESUMO

Seizures due to cortical dysplasia are notorious for their poor prognosis even with medications and surgery, likely due to the widespread seizure network. Previous studies have primarily focused on the disruption of dysplastic lesions, rather than remote regions such as the hippocampus. Here, we first quantified the epileptogenicity of the hippocampus in patients with late-stage cortical dysplasia. We further investigated the cellular substrates leading to the epileptic hippocampus, using multiscale tools including calcium imaging, optogenetics, immunohistochemistry and electrophysiology. For the first time, we revealed the role of hippocampal somatostatin-positive interneurons in cortical dysplasia-related seizures. Somatostatin-positive were recruited during cortical dysplasia-related seizures. Interestingly, optogenetic studies suggested that somatostatin-positive interneurons paradoxically facilitated seizure generalization. By contrast, parvalbumin-positive interneurons retained an inhibitory role as in controls. Electrophysiological recordings and immunohistochemical studies revealed glutamate-mediated excitatory transmission from somatostatin-positive interneurons in the dentate gyrus. Taken together, our study reveals a novel role of excitatory somatostatin-positive neurons in the seizure network and brings new insights into the cellular basis of cortical dysplasia.


Assuntos
Interneurônios , Convulsões , Humanos , Interneurônios/metabolismo , Hipocampo , Somatostatina/genética , Somatostatina/metabolismo , Giro Denteado/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(18): e2216820120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098068

RESUMO

Daily and annual changes in light are processed by central clock circuits that control the timing of behavior and physiology. The suprachiasmatic nucleus (SCN) in the anterior hypothalamus processes daily photic inputs and encodes changes in day length (i.e., photoperiod), but the SCN circuits that regulate circadian and photoperiodic responses to light remain unclear. Somatostatin (SST) expression in the hypothalamus is modulated by photoperiod, but the role of SST in SCN responses to light has not been examined. Our results indicate that SST signaling regulates daily rhythms in behavior and SCN function in a manner influenced by sex. First, we use cell-fate mapping to provide evidence that SST in the SCN is regulated by light via de novo Sst activation. Next, we demonstrate that Sst  -/- mice display enhanced circadian responses to light, with increased behavioral plasticity to photoperiod, jetlag, and constant light conditions. Notably, lack of Sst  -/- eliminated sex differences in photic responses due to increased plasticity in males, suggesting that SST interacts with clock circuits that process light differently in each sex. Sst  -/- mice also displayed an increase in the number of retinorecipient neurons in the SCN core, which express a type of SST receptor capable of resetting the molecular clock. Last, we show that lack of SST signaling modulates central clock function by influencing SCN photoperiodic encoding, network after-effects, and intercellular synchrony in a sex-specific manner. Collectively, these results provide insight into peptide signaling mechanisms that regulate central clock function and its response to light.


Assuntos
Relógios Circadianos , Luz , Camundongos , Feminino , Masculino , Animais , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Fotoperíodo , Relógios Circadianos/genética
8.
Am J Psychiatry ; 180(7): 495-507, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37073488

RESUMO

OBJECTIVE: In schizophrenia, somatostatin (SST) and parvalbumin (PV) mRNA levels are lower in the dorsolateral prefrontal cortex (DLPFC), but it remains unclear whether these findings reflect lower transcript levels per neuron, fewer neurons, or both. Distinguishing among these alternatives has implications for understanding the pathogenesis of, and developing new treatments for, DLPFC dysfunction in schizophrenia. METHODS: To identify SST and PV neurons in postmortem human DLPFC, the authors used fluorescent in situ hybridization to label cells expressing two transcripts not altered in schizophrenia: vesicular GABA transporter (VGAT; a marker of all GABA neurons) and SOX6 (a marker of only SST and PV neurons). In cortical layers 2 and 4, where SST and PV neurons, respectively, are differentially enriched, levels of SST and PV mRNA per neuron and the relative densities of SST-, PV-, and VGAT/SOX6-positive neurons were quantified. RESULTS: In individuals with schizophrenia, mRNA levels per positive neuron were markedly and significantly lower for SST in both layers (effect sizes >1.48) and for PV only in layer 4 (effect size=1.14) relative to matched unaffected individuals. In contrast, the relative densities of all SST-, PV-, or VGAT/SOX6-positive neurons were unaltered in schizophrenia. CONCLUSIONS: Novel multiplex fluorescent in situ hybridization techniques permit definitive distinction between cellular levels of transcripts and the presence of neurons expressing those transcripts. In schizophrenia, pronounced SST and PV mRNA deficits are attributable to lower levels of each transcript per neuron, not fewer neurons, arguing against death or abnormal migration of these neurons. Instead, these neurons appear to be functionally altered and thus amenable to therapeutic interventions.


Assuntos
Esquizofrenia , Humanos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Expressão Gênica/genética , Hibridização in Situ Fluorescente , Parvalbuminas/genética , Parvalbuminas/metabolismo , Córtex Pré-Frontal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
9.
J Neurosci Res ; 101(4): 424-447, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36541427

RESUMO

Somatostatin (SST) expressing interneurons are the second most abundant group of inhibitory neurons in the neocortex. They mainly target the apical dendrites of excitatory pyramidal cells and are implicated in feedforward and feedback inhibition. In the present study, we employ a conditional knockout mouse, in which the transcription factor Satb1 is selectively deleted in SST-expressing interneurons resulting to the reduction of their number across the somatosensory barrel field. Our goal was to investigate the effect of the reduced number of Satb1 mutant SST-interneurons on (i) the endogenous cortical network activity (spontaneously recurring Up/Down states), and (ii) the transition to epileptiform activity. By conducting LFP recordings in acute brain slices from young male and female mice, we demonstrate that mutant animals exhibit significant changes in network excitability, reflected in increased Up state occurrence, decreased Up state duration and higher levels of extracellular spiking activity. Epileptiform activity was induced through two distinct and widely used in vitro protocols: the low magnesium and the 4-Aminopyridine (4-AP) model. In the former, slices from mutant animals manifested shorter latency for the expression of stable seizure-like events. In contrast, when epilepsy was induced by 4-AP, no significant differences were reported. We conclude that normal SST-interneuron function has a significant role both in the regulation of the endogenous network activity, and in the transition to seizure-like discharges in a context-dependent manner.


Assuntos
Epilepsia , Proteínas de Ligação à Região de Interação com a Matriz , Neocórtex , Camundongos , Feminino , Masculino , Animais , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Interneurônios/fisiologia , Epilepsia/genética , Epilepsia/metabolismo , Neocórtex/metabolismo , Convulsões/metabolismo , Camundongos Knockout , Fatores de Transcrição/metabolismo
10.
Neurotox Res ; 40(6): 1824-1837, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36378411

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by loss of neurons and synapses. The aim of this study was to investigate the effect of somatostatin analogue Vapreotide in an in vitro Alzheimer's model and its effects based on the relationship between somatostatinergic transmission and neurodegenerative functions. In this study, tau transfection was performed using the MAPT gene cloned into the pcDNA3.1 vector and transfection reagent into the SH-SY5Y cell line. In viability experiments using 10 µM Memantine as a positive control, it was observed that Vapreotide at 50 µM (p < 0.0001) and 100 µM (p < 0.05) had a protective effect on cell viability, 100 µM CYN154806 was found to decrease (p < 0.05) cell viability. It was determined that Vapreotide, decreased the expression levels (50 µM-p < 0.001; 100 µM-p < 0.001; 200 µM-p < 0.0001) and phosphorylation of Tau and p-Tau proteins by western blots. With the qRT-PCR method, it was found that Vapreotide, decreased the BAX/BCL2 (50 µM-p < 0.001; 100 µM-p < 0.01; 200 µM-p < 0.001) expression level and decreased the expression level (50 µM-p < 0.01; 100 µM-p < 0.01; 200 µM-p < 0.001) of the APOE4 gene, which constitutes a genetic risk for AD. This study demonstrates a potential therapeutic role for a somatostatin analogue Vapreotide in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Somatostatina/uso terapêutico , Transfecção , Fosforilação
11.
Sci Rep ; 12(1): 16885, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207478

RESUMO

Somatostatin, a growth hormone-release inhibiting peptide, exerts antiproliferative and antiangiogenic effects on tumor cells. However, the short half-life of somatostatin limits its application in human therapy, and long-acting somatostatin fusion protein is also limited by its severe terminal degradation. Therefore, oncolytic virus delivery system was introduced to express somatostatin fusion protein and the anti-tumor effects of both somatostatin and oncolytic virus were combined to destroy tumor tissues. Here, a vaccinia VG9/(SST-14)2-HSA recombinant was constructed by replacing somatostatin fusion gene into TK locus of attenuated VG9 strain via homologous recombination. Results showed that vaccinia VG9/(SST-14)2-HSA possessed a combined anti-tumor effect on sstr-positive tumor cells in vitro. In the tumor burden models, BALB/c mice with complete immunity are most suitable for evaluating tumor regression and immune activation. Complete tumor regression was observed in 3 out of 10 mice treated with vaccinia VG9/TK- or VG9/(SST-14)2-HSA, and the survival of all mice in both groups was significantly prolonged. Besides, vaccinia VG9/(SST-14)2-HSA is more effective in prolonging survival than VG9/TK-. Vaccinia VG9/(SST-14)2-HSA exerts a combined anti-tumor efficacy including the oncolytic ability provided by the virus and the anti-tumor effect contributed by (SST-14)2-HSA, which is expected to become a potent therapeutic agent for cancer treatment.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vaccinia , Animais , Hormônio do Crescimento/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Terapia Viral Oncolítica/métodos , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/metabolismo , Vírus Vaccinia
12.
Life Sci Alliance ; 5(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36192034

RESUMO

Selective neuronal vulnerability is common in neurodegenerative diseases but poorly understood. In genetic prion diseases, including fatal familial insomnia (FFI) and Creutzfeldt-Jakob disease (CJD), different mutations in the Prnp gene manifest as clinically and neuropathologically distinct diseases. Here we report with electroencephalography studies that theta waves are mildly increased in 21 mo old knock-in mice modeling FFI and CJD and that sleep is mildy affected in FFI mice. To define affected cell types, we analyzed cell type-specific translatomes from six neuron types of 9 mo old FFI and CJD mice. Somatostatin (SST) neurons responded the strongest in both diseases, with unexpectedly high overlap in genes and pathways. Functional analyses revealed up-regulation of neurodegenerative disease pathways and ribosome and mitochondria biogenesis, and down-regulation of synaptic function and small GTPase-mediated signaling in FFI, implicating down-regulation of mTOR signaling as the root of these changes. In contrast, responses in glutamatergic cerebellar neurons were disease-specific. The high similarity in SST neurons of FFI and CJD mice suggests that a common therapy may be beneficial for multiple genetic prion diseases.


Assuntos
Síndrome de Creutzfeldt-Jakob , Insônia Familiar Fatal , Proteínas Monoméricas de Ligação ao GTP , Doenças Neurodegenerativas , Doenças Priônicas , Animais , Síndrome de Creutzfeldt-Jakob/genética , Insônia Familiar Fatal/genética , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Doenças Priônicas/genética , Somatostatina/genética , Somatostatina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
13.
J Neurosci Methods ; 381: 109704, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36070817

RESUMO

BACKGROUND: Somatostatin (SST) and cholecystokinin (CCK) are peptide hormones that regulate the endocrine system, cell proliferation and neurotransmission. NEW METHOD: We utilized the novel Easi-CRISPR system to generate two knock-in mouse strains with Cre recombinase in SST- and CCK-expressing cells and validated their utility in the developing and adult brain tissues. RESULTS: The full nomenclature for the newly generated strains are C57BL/6-Sstem1(P2A-iCre-T2A-mCherry)Mirn and C57BL/6-Cckem1(iCre-T2A-mCherry-P2A)Mirn. For the Sst locus, a P2A-iCre-T2A-mCherry cassette was inserted immediately upstream of the stop codon (C terminus fusion). For the Cck locus, iCre-P2A-mCherry-T2A cassette was inserted at the start codon (N terminus fusion). Knock-in mice were generated using the Easi-CRISPR method. Developmental and adult SST and CCK expressions were preserved and showed an appropriate expression pattern in both models, with an active fluorescent tag in both animal lines. COMPARISON WITH EXISTING METHODS: Knock-in mouse models to study cell types that produce these critically important molecules are limited to date. The knock-in mice we generated can be used as reporters to study development, physiology, or pathophysiology of SST and CCK expressing cells - without interference with native expression of SST and CCK. In addition, they can be used as Cre driver models to conditionally delete floxed genes in SST and CCK expressing cells across various tissues. CONCLUSIONS: These two mouse models serve as valuable tools for in vitro and in vivo research studies related to SST and CCK biology across the lifespan and across different tissue types.


Assuntos
Colecistocinina , Somatostatina , Animais , Colecistocinina/genética , Códon de Iniciação , Códon de Terminação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Somatostatina/genética
14.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955787

RESUMO

Acromegaly is a chronic and systemic disease due to excessive growth hormone and insulin-like growth factor type I caused, in the vast majority of cases, by a GH-secreting pituitary adenoma. About 40% of these tumors have somatic mutations in the stimulatory G protein alpha-subunit 1 gene. The pathogenesis of the remaining tumors, however, is still not fully comprehended. Surgery is the first-line therapy for these tumors, and first-generation somatostatin receptor ligands (fg-SRL) are the most prescribed medications in patients who are not cured by surgery. MicroRNAs are small, non-coding RNAs that control the translation of many mRNAs, and are involved in the post-transcriptional regulation of gene expression. Differentially expressed miRNAs can explain differences in the pathogenesis of acromegaly and tumor resistance. In this review, we focus on the most validated miRNAs, which are mainly involved in acromegaly's tumorigenesis and fg-SRL resistance, as well as in circulating miRNAs in acromegaly.


Assuntos
Acromegalia , Adenoma , Hormônio do Crescimento Humano , MicroRNAs , Acromegalia/genética , Adenoma/metabolismo , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , MicroRNAs/genética , MicroRNAs/uso terapêutico , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/uso terapêutico
15.
Science ; 377(6614): eabo7257, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36007006

RESUMO

The granular dorsolateral prefrontal cortex (dlPFC) is an evolutionary specialization of primates that is centrally involved in cognition. We assessed more than 600,000 single-nucleus transcriptomes from adult human, chimpanzee, macaque, and marmoset dlPFC. Although most cell subtypes defined transcriptomically are conserved, we detected several that exist only in a subset of species as well as substantial species-specific molecular differences across homologous neuronal, glial, and non-neural subtypes. The latter are exemplified by human-specific switching between expression of the neuropeptide somatostatin and tyrosine hydroxylase, the rate-limiting enzyme in dopamine production in certain interneurons. The above molecular differences are also illustrated by expression of the neuropsychiatric risk gene FOXP2, which is human-specific in microglia and primate-specific in layer 4 granular neurons. We generated a comprehensive survey of the dlPFC cellular repertoire and its shared and divergent features in anthropoid primates.


Assuntos
Córtex Pré-Frontal Dorsolateral , Evolução Molecular , Primatas , Somatostatina , Tirosina 3-Mono-Oxigenase , Adulto , Animais , Dopamina/metabolismo , Córtex Pré-Frontal Dorsolateral/citologia , Córtex Pré-Frontal Dorsolateral/metabolismo , Humanos , Pan troglodytes , Primatas/genética , Análise de Célula Única , Somatostatina/genética , Somatostatina/metabolismo , Transcriptoma , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
16.
J Comp Neurol ; 530(17): 2977-2993, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35844047

RESUMO

The olfactory placode (OP) of vertebrates generates several classes of migrating cells, including hypothalamic gonadotropin-releasing hormone (GnRH)-producing neurons, which play essential roles in the reproduction system. Previous studies using OP cell labeling have demonstrated that OP-derived non-GnRH cells enter the developing forebrain; however, their final fates and phenotypes are less well understood. In chick embryos, a subpopulation of migratory cells from the OP that is distinct from GnRH neurons transiently expresses somatostatin (SS). We postulated that these cells are destined to develop into brain neurons. In this study, we examined the expression pattern of SS mRNA in the olfactory-forebrain region during development, as well as the destination of OP-derived migratory cells, including SS mRNA-expressing cells. Utilizing the Tol2 genomic integration system to induce long-term fluorescent protein expression in OP cells, we found that OP-derived migratory cells labeled at embryonic day (E) 3 resided in the olfactory nerve and medial forebrain at E17-19. A subpopulation of green fluorescent protein (GFP)-labeled GnRH neurons that remained in the olfactory nerve was considered to comprise terminal nerve neurons. In the forebrain, GFP-labeled cells showed a distribution pattern similar to that of GnRH neurons. A large proportion of GFP-labeled cells expressed the mature neuronal marker NeuN. Among the GFP-labeled cells, the percentage of GnRH neurons was low, while the remaining GnRH-negative neurons either expressed SS mRNA, neuropeptide Y, or calbindin D-28k or did not express any of them. These results indicate that a diverse population of OP-derived neuronal cells, other than GnRH neurons, integrates into the chick medial forebrain.


Assuntos
Hormônio Liberador de Gonadotropina , Neuropeptídeo Y , Animais , Calbindinas/metabolismo , Movimento Celular/fisiologia , Embrião de Galinha , Galinhas/metabolismo , Hormônio Liberador de Gonadotropina/genética , Proteínas de Fluorescência Verde/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Prosencéfalo/metabolismo , RNA Mensageiro/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
17.
Horm Behav ; 144: 105231, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35779519

RESUMO

BACKGROUND: The BDNF Val66Met single nucleotide polymorphism has been implicated in stress sensitivity and Post-Traumatic Stress Disorder (PTSD) risk. We previously reported that chronic young-adult stress hormone treatment enhanced fear memory in adult BDNFVal66Met mice with the Met/Met genotype. This study aimed to extend this work to fear extinction learning, spontaneous recovery of fear, and neurobiological correlates in the amygdala. METHODS: Male and female Val/Val and Met/Met mice received corticosterone in their drinking water during late adolescence to model chronic stress. Following a 2-week recovery period, the mice underwent fear conditioning and extinction training. Immunofluorescent labelling was used to assess density of three interneuron subtypes; somatostatin, parvalbumin and calretinin, within distinct amygdala nuclei. RESULTS: No significant effects of genotype, treatment or sex were found for fear learning. However, adolescent CORT treatment selectively abolished fear extinction of female Met/Met mice. No effect of genotype, sex, or treatment was observed for spontaneous recovery of fear. Significant main effects of genotype and CORT emerged for somatostatin and calretinin cell density, again in females only, further supporting sex-specific effects of the Met/Met genotype and chronic CORT exposure. CONCLUSION: BDNF Val66Met genotype interacts with chronic adolescent stress hormone exposure to abolish fear extinction in female Met/Met mice in adulthood. This effect was associated with female-specific interneuron dysfunction induced by either genotype or stress hormone exposure, depending on the interneuron subtype. These data provide biological insight into the role of BDNF in sex differences in sensitivity to stress and vulnerability to stress-related disorders in adulthood.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Medo , Tonsila do Cerebelo/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Calbindina 2/genética , Calbindina 2/metabolismo , Extinção Psicológica , Feminino , Genótipo , Glucocorticoides/farmacologia , Interneurônios/metabolismo , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Somatostatina/genética , Somatostatina/metabolismo
18.
Front Endocrinol (Lausanne) ; 13: 861922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573999

RESUMO

Type 1 diabetes results from the autoimmune-mediated loss of insulin-producing beta-cells. Accordingly, important research efforts aim at regenerating these lost beta-cells by converting pre-existing endogenous cells. Following up on previous results demonstrating the conversion of pancreatic somatostatin delta-cells into beta-like cells upon Pax4 misexpression and acknowledging that somatostatin-expressing cells are highly represented in the gastrointestinal tract, one could wonder whether this Pax4-mediated conversion could also occur in the GI tract. We made use of transgenic mice misexpressing Pax4 in somatostatin cells (SSTCrePOE) to evaluate a putative Pax4-mediated D-to-beta-like cell conversion. Additionally, we implemented an ex vivo approach based on mice-derived gut organoids to assess the functionality of these neo-generated beta-like cells. Our results outlined the presence of insulin+ cells expressing several beta-cell markers in gastrointestinal tissues of SSTCrePOE animals. Further, using lineage tracing, we established that these cells arose from D cells. Lastly, functional tests on mice-derived gut organoids established the ability of neo-generated beta-like cells to release insulin upon stimulation. From this study, we conclude that the misexpression of Pax4 in D cells appears sufficient to convert these into functional beta-like cells, thus opening new research avenues in the context of diabetes research.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Células Secretoras de Somatostatina , Animais , Proteínas de Homeodomínio/genética , Insulina , Camundongos , Fatores de Transcrição Box Pareados/genética , Somatostatina/genética
19.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35383850

RESUMO

Somatostatin and its related peptides (SSRPs) form an important family of hormones with diverse physiological roles. The ubiquitous presence of SSRPs in vertebrates and several invertebrate deuterostomes suggests an ancient origin of the SSRP signaling system. However, the existence of SSRP genes outside of deuterostomes has not been established, and the evolutionary history of this signaling system remains poorly understood. Our recent discovery of SSRP-like toxins (consomatins) in venomous marine cone snails (Conus) suggested the presence of a related signaling system in mollusks and potentially other protostomes. Here, we identify the molluscan SSRP-like signaling gene that gave rise to the consomatin family. Following recruitment into venom, consomatin genes experienced strong positive selection and repeated gene duplications resulting in the formation of a hyperdiverse family of venom peptides. Intriguingly, the largest number of consomatins was found in worm-hunting species (>400 sequences), indicating a homologous system in annelids, another large protostome phylum. Consistent with this, comprehensive sequence mining enabled the identification of SSRP-like sequences (and their corresponding orphan receptor) in annelids and several other protostome phyla. These results established the existence of SSRP-like peptides in many major branches of bilaterians and challenge the prevailing hypothesis that deuterostome SSRPs and protostome allatostatin-C are orthologous peptide families. Finally, having a large set of predator-prey SSRP sequences available, we show that although the cone snail's signaling SSRP-like genes are under purifying selection, the venom consomatin genes experience rapid directional selection to target receptors in a changing mix of prey.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Conotoxinas/genética , Caramujo Conus/genética , Neuropeptídeos , Peptídeos/genética , Somatostatina/genética , Peçonhas
20.
J Reprod Dev ; 68(3): 190-197, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35249910

RESUMO

Reproductive function is suppressed during lactation owing to the suckling-induced suppression of the kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and subsequent suppression of luteinizing hormone (LH) release. Our previous study revealed that somatostatin (SST) neurons mediate suckling-induced suppression of LH release via SST receptor 2 (SSTR2) in ovariectomized lactating rats during early lactation. This study examined whether central SST-SSTR2 signaling mediates the inhibition of ARC Kiss1 expression and LH release in lactating rats during late lactation and whether the inhibition of glutamatergic neurons, stimulators of LH release, is involved in the suppression of LH release mediated by central SST-SSTR2 signaling in lactating rats. A central injection of the SSTR2 antagonist CYN154806 (CYN) significantly increased ARC Kiss1 expression in lactating rats on day 16 of lactation. Dual in situ hybridization revealed that few ARC Kiss1-positive cells co-expressed Sstr2, and some of the ARC Slc17a6 (a glutamatergic neuronal marker)-positive cells co-expressed Sstr2. Furthermore, almost all ARC Kiss1-positive cells co-expressed Grin1, a subunit of N-methyl-D-aspartate (NMDA) receptors. The numbers of Slc17a6/Sstr2 double-labeled and Slc17a6 single-labeled cells were significantly lower in lactating dams than in non-lactating rats whose pups had been removed after parturition. A central injection of an NMDA antagonist reversed the CYN-induced increase in LH release in lactating rats. Overall, these results suggest that central SST-SSTR2 signaling, at least partly, mediates the suppression of ARC Kiss1 expression and LH release by inhibiting ARC glutamatergic interneurons in lactating rats.


Assuntos
Interneurônios , Kisspeptinas , Lactação , Hormônio Luteinizante , Receptores de Somatostatina , Somatostatina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Interneurônios/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Lactação/metabolismo , Hormônio Luteinizante/metabolismo , N-Metilaspartato/metabolismo , Oligopeptídeos/farmacologia , Ratos , Receptores de Somatostatina/antagonistas & inibidores , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...